Product Datasheet

p53(Phospho-Ser315) Antibody

Catalog No: #11100

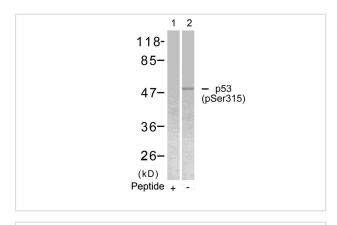
Package Size: #11100-1 50ul #11100-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

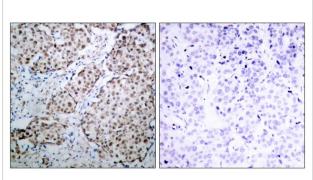
Description

Product Name	p53(Phospho-Ser315) Antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Antibodies were produced by immunizing rabbits with synthetic phosphopeptide and KLH conjugates.
	Antibodies were purified by affinity-chromatography using epitope-specific phosphopeptide. Non-phospho
	specific antibodies were removed by chromatogramphy using non-phosphopeptide.
Applications	WB IHC IF
Species Reactivity	Hu
Specificity	The antibody detects endogenous level of p53 only when
	phosphorylated at serine 315.
Immunogen Type	Peptide-KLH
Immunogen Description	Peptide sequence around phosphorylation site of serine 315 (S-S-S(p)-P-Q) derived from Human p53.
Target Name	p53
Modification	Phospho
Other Names	Tumor suppressor p53; Phosphoprotein p53; Antigen NY-CO-13; TP53;
Accession No.	Swiss-Prot: P04637NCBI Protein: NP_000537.3
Concentration	1.0mg/ml
Formulation	Supplied at 1.0mg/mL in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02%
	sodium azide and 50% glycerol.
Storage	Store at -20°C for long term preservation (recommended). Store at 4°C for short term use.

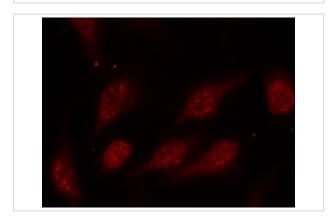
Application Details


Predicted MW: 53kd

Western blotting: 1:500~1:1000


Immunohistochemistry: 1:50~1:100

Immunofluorescence: 1:100~1:200


Images

Western blot analysis of extracts from Hela cells using p53(Phospho-Ser315) Antibody #11100(Lane 2) and the same antibody preincubated with blocking peptide(Lane1).

Immunohistochemical analysis of paraffin-embedded human breast carcinoma tissue using p53(Phospho-Ser315) Antibody #11100(left) or the same antibody preincubated with blocking peptide(right).

Immunofluorescence staining of methanol-fixed Hela cells using p53(Phospho-Ser315) Antibody #11100.

Background

Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type. Involved in cell cycle regulation as a trans-activator that acts to negatively regulate cell division by controlling a set of genes required for this process. One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression. Implicated in Notch signaling cross-over.

Lu, H. et al. (1997) Mol. Cell. Biol. 17, 5923-5934.

Lohrum, M. et.al. (1996) Oncogene 13, 2527-2539.

Posp

Published Papers

el at., Cell cycle arrest and apoptosis of OVCAR-3 and MCF-7 cells induced by co-immobilized TNF-δΌ plus IFN-η1¬ on polystyrene and the role of p53 activation. In Biomaterials

on 2012 Sep by Yan-Qing Guan, Zhibin Li, et al..PMID: 22682938, , (2012)

PMID:22682938

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account numeric of animals.