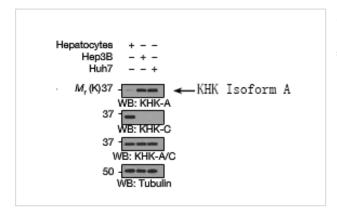
KHK Isoform A Antibody

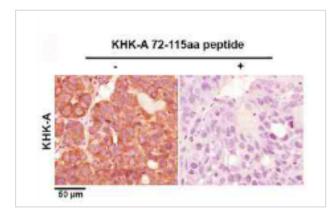
Catalog No: #21708

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

Desc	rin	tion
17251	2	


Product Name	KHK Isoform A Antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Antibodies were produced by immunizing rabbits with synthetic peptide and KLH conjugates. Antibodies were
	purified by affinity-chromatography using epitope-specific peptide.
Applications	WB IHC
Species Reactivity	Hu
Specificity	The antibody detects endogenous level of total KHK Isoform A protein.
Immunogen Type	Peptide-KLH
Immunogen Description	Peptide sequence around aa.90~95 (T-T-G-S-V) derived from Human KHK Isoform A .
Other Names	Ketohexokinase; Hepatic fructokinase; KHK
Accession No.	Swiss-Prot#: P50053-2NCBI Gene ID: 3795NCBI Protein#: NP_000212.1
Calculated MW	33kd
Concentration	1.0mg/mL
Formulation	Supplied at 1.0mg/mL in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02%
	sodium azide and 50% glycerol.
Storage	Store at -20°C

Application Details


Western blotting: 1:500-1000

Immunohistochemistry: 1:50~1:100

Images

Western blot analysis of extracts from Hepatocytee, Hep3B and Huh7 cells using KHK Isoform A Antibody #21708. (Reference: Nat Cell Biol. 2016 May;18(5):561-71.) .

Immunohistochemical analysis of tumors derived from Huh-7cells using KHK Isoform A Antibody #21708 (left) or the same antibody preincubated with blocking peptide (right). (Reference: Nat Cell Biol. 2016 May;18(5):561-71.)

Background

Catalyzes the phosphorylation of the ketose sugar fructose to fructose-1-phosphate.

Bonthron D.T., Brady N., Donaldson I.A., Steinmann B.Hum. Mol. Genet. 3:1627-1631(1994)

Published Papers

el at., Ketohexokinase inhibition improves NASH by reducing fructose-induced steatosis and fibrogenesis. In JHEP Rep on 2020 Nov 20 by Emma L Shepherd, Raquel Saborano, et al..PMID:33490936, , (2021)

PMID:33490936

el at., IL-6/STAT3 signaling activation exacerbates high fructose-induced podocyte hypertrophy by ketohexokinase-A-mediated tristetraprolin down-regulation. In Cell Signal on 2021 Oct by Jie Zhou, Jie Yang, et al..PMID:34252535, , (2021)

PMID:34252535

el at., The small intestine shields the liver from fructose-induced steatosis. In Nat Metab on 2020 Jul by Cholsoon Jang, Shogo Wada, et al..PMID: 32694791, , (2020)

PMID:32694791

el at., Ketohexokinase-A acts as a nuclear protein kinase that mediates fructose-induced metastasis in breast cancer. In Nat Commun on 2020 Oct 28 by Jiyoung Kim, Jengmin Kang, et al..PMID:33116123, , (2020)

PMID:33116123

el at., Increased ketohexokinase-A governs fructose-induced podocyte hypertrophy by IL-6/STAT3 signaling activation, , (2020)

PMID:

el at., Deletion of Fructokinase in the Liver or in the Intestine Reveals Differential Effects on Sugar-Induced Metabolic Dysfunction. In Cell Metab on 2020 Jul 7

by Ana Andres-Hernando, David J Orlicky, et al..PMID:32502381, , (2020)

PMID:32502381

el at., Prognostic Impact of Metabolism ReprogrammIng Markers Acetyl-CoA Synthetase 2 Phosphorylation and KetohexokInase-A Expression In Non-Small-Cell Lung CarcInoma. In Front Oncol on 2019 Nov 5 by Yang X, Shao F, et al..PMID:31750240, , (2019)

PMID:31750240

Li X, Qian X, Peng LX et al el at., A splicing switch from ketohexokinase-C to ketohexokinase-A drives hepatocellular carcinoma formation, Nat Cell Biol., 18(5):561-71.(2016 May)

PMID:27088854

el at., A splicing switch from ketohexokinase-C to ketohexokinase-A drives hepatocellular carcinoma formation.In Nat Cell Biol on 2016 Ma by Xinjian Li , Xu Qian et al..PMID:27088854 , , (2016)

PMID:27088854

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in this research deep only and is not interior deep in right and or animals.