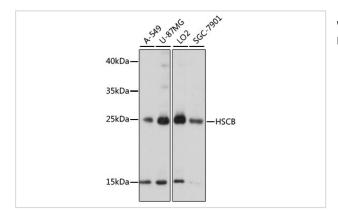
HSCB Polyclonal Antibody

Catalog No: #29516

Package Size: #29516-1 50ul #29516-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	HSCB Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB
Species Reactivity	Hu
Immunogen Description	Recombinant fusion protein of human HSCB (NP_741999.3).
Other Names	HSCB; DNAJC20; HSC20; JAC1; HscB mitochondrial iron-sulfur cluster cochaperone
Accession No.	Swiss-Prot#:Q8IWL3NCBI Gene ID:150274
Calculated MW	27kDa
Formulation	Avoid freeze / thaw cycles. Buffer: PBS with 50% glycerol, pH7.4.
Storage	Store at -20°C

Application Details

WB 1:500 - 1:2000

Images

Western blot analysis of extracts of various cell lines, using HSCB antibody.

Background

This gene encodes a DnaJ-type co-chaperone and member of the heat shock cognate B (HscB) family of proteins. The encoded protein plays a role in the synthesis of iron-sulfur clusters, protein cofactors that are involved in the redox reactions of mitochondrial electron transport and other processes. Cells in which this gene is knocked down exhibit reduced activity of iron-sulfur cluster-dependent enzymes including succinate dehydrogenase and aconitase. The encoded protein may stimulate the ATPase activity of the mitochondrial stress-70 protein. Alternative splicing results in multiple transcript variants.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		