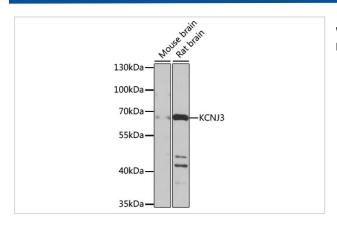
# KCNJ3 Polyclonal Antibody

Catalog No: #31746

Package Size: #31746-1 50ul #31746-2 100ul



Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


# Description

| Product Name          | KCNJ3 Polyclonal Antibody                                                       |
|-----------------------|---------------------------------------------------------------------------------|
| Host Species          | Rabbit                                                                          |
| Clonality             | Polyclonal                                                                      |
| Isotype               | IgG                                                                             |
| Purification          | Affinity purification                                                           |
| Applications          | WB,IHC                                                                          |
| Species Reactivity    | Hu,Ms,Rt                                                                        |
| Immunogen Description | A synthetic peptide of human KCNJ3 (NP_002230.1).                               |
| Other Names           | KCNJ3; GIRK1; KGA; KIR3.1; potassium voltage-gated channel subfamily J member 3 |
| Accession No.         | Swiss-Prot#:P48549NCBI Gene ID:3760                                             |
| Calculated MW         | 60kDa                                                                           |
| Formulation           | Avoid freeze / thaw cycles. Buffer: PBS with 50% glycerol, pH7.4.               |
| Storage               | Store at -20°C                                                                  |

## **Application Details**

WB 1:500 - 1:2000IHC 1:50 - 1:200

## **Images**



Western blot analysis of extracts of various cell lines, using KCNJ3 antibody.

## Background

Potassium channels are present in most mammalian cells, where they participate in a wide range of physiologic responses. The protein encoded by this gene is an integral membrane protein and inward-rectifier type potassium channel. The encoded protein, which has a greater tendency to allow potassium to flow into a cell rather than out of a cell, is controlled by G-proteins and plays an important role in regulating heartbeat. It associates with three other G-protein-activated potassium channels to form a heteromultimeric pore-forming complex that also couples to neurotransmitter receptors in the brain and whereby channel activation can inhibit action potential firing by hyperpolarizing the plasma membrane. These multimeric G-protein-gated inwardly-rectifying potassium (GIRK) channels may play a role in the pathophysiology of epilepsy, addiction, Down's syndrome, ataxia, and Parkinson's disease. Alternative splicing results in multiple transcript variants encoding distinct proteins.

| Note: This product is for in vitro research use only and is not intended for use in humans or animals. |  |  |
|--------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                        |  |  |
|                                                                                                        |  |  |
|                                                                                                        |  |  |
|                                                                                                        |  |  |
|                                                                                                        |  |  |
|                                                                                                        |  |  |
|                                                                                                        |  |  |
|                                                                                                        |  |  |
|                                                                                                        |  |  |
|                                                                                                        |  |  |
|                                                                                                        |  |  |
|                                                                                                        |  |  |
|                                                                                                        |  |  |
|                                                                                                        |  |  |
|                                                                                                        |  |  |
|                                                                                                        |  |  |
|                                                                                                        |  |  |
|                                                                                                        |  |  |
|                                                                                                        |  |  |
|                                                                                                        |  |  |
|                                                                                                        |  |  |
|                                                                                                        |  |  |
|                                                                                                        |  |  |