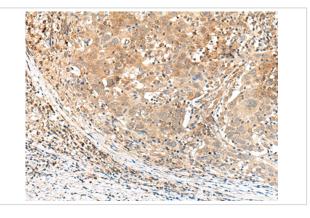
Product Datasheet

KCNA10 antibody

Catalog No: #31958

Package Size: #31958-1 50ul #31958-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	KCNA10 antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Antigen affinity purification
Applications	IHC
Species Reactivity	Hu, Ms
Immunogen Description	Synthetic peptide of human KCNA10
Target Name	KCNA10
Other Names	Kcn1; Kv1.8
Accession No.	Swiss-Prot#: Q07627NCBI Gene ID: NP_005540
Concentration	0.7mg/ml
Formulation	pH7.4 PBS, 0.05% NaN3, 40% Glycerol
Storage	Store at -20°C/1 year

Application Details

IHC dilution:1:30-1:150

Images

The image is immunohistochemistry of paraffin-embedded Human cervical cancer tissue using (KCNA10 Antibody) at dilution 1/40.

Background

Potassium channels represent the most complex class of voltage-gated ion channels from both functional and structural standpoints. Their diverse functions include regulating neurotransmitter release, heart rate, insulin secretion, neuronal excitability, epithelial electrolyte transport, smooth muscle contraction, and cell volume. Four sequence-related potassium channel genes - shaker, shaw, shab, and shal - have been identified in Drosophila, and each has been shown to have human homolog(s). This gene encodes a member of the potassium channel, voltage-gated, shaker-related subfamily. This member contains six membrane-spanning domains with a shaker-type repeat in the fourth segment. It is specifically regulated by cGMP and postulated to mediate the effects of substances that increase intracellular cGMP. This gene is intronless, and the gene is clustered with genes KCNA2 and KCNA3 on chromosome 1.?

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		