a-catenin(Phospho-Ser641) Antibody

Catalog No: #11330

Description

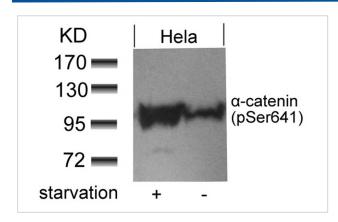
Package Size: #11330-1 50ul #11330-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

Description	
Product Name	a-catenin(Phospho-Ser641) Antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Antibodies were produced by immunizing rabbits with synthetic phosphopeptide and KLH conjugates.
	Antibodies were purified by affinity-chromatography using epitope-specific phosphopeptide. Non-phospho
	specific antibodies were removed by chromatogramphy using non-phosphopeptide.
Applications	WB
Species Reactivity	Hu Ms
Specificity	The antibody detects endogenous level of a-catenin only when phosphorylated at serine 641.
Immunogen Type	Peptide-KLH
Immunogen Description	Peptide sequence around phosphorylation site of serine 641 (D-D-S(p)-D-F) derived from Human a-catenin.
Target Name	a-catenin
Modification	Phospho
Other Names	Cadherin-associated protein; Alpha E-catenin; NY-REN-13 antigen
Accession No.	Swiss-Prot: P35221NCBI Protein: NP_001894.2
Concentration	1.0mg/ml

sodium azide and 50% glycerol.

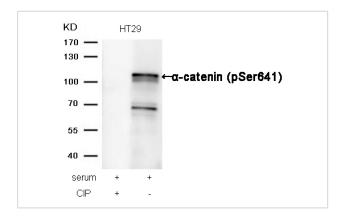
Application Details


Predicted MW: 100kd

Western blotting: 1:500~1:1000

Images

Formulation


Storage

Western blot analysis of extracts from Hela cells untreated or treated with starvation using a-catenin(Phospho-Ser641) antibody #11330.

Supplied at 1.0mg/mL in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02%

Store at -20°C for long term preservation (recommended). Store at 4°C for short term use.

Western blot analysis of extracts from HT29 cells, treated with serum or calf intestinal phosphatase (CIP), using α -catenin (Phospho-Ser641) Antibody #11330.

Background

Associates with the cytoplasmic domain of a variety of cadherins. The association of catenins to cadherins produces a complex which is linked to the actin filament network, and which seems to be of primary importance for cadherins cell-adhesion properties. May play a crucial role in cell differentiation.

Hwang, S.G. et al. (2005) J. Biol. Chem. 280, 12758-12765

Drees, F. et al. (2005) Cell 123, 903-915.

Yamada, S. et al. (2005) Cell 123, 889-901.

Kobielak, A. and Fuchs, E. (2004) Nat. Rev. Mol. Cell Biol. 5, 614-625.

Published Papers

el at., Ginsenoside Rh2 activates α -catenin phosphorylation to inhibit lung cancer cell proliferation and invasion. In Exp Ther Med on 2020 Apr; by Zhang G, He L, et al.. PMID: 32256776, , (2020)

PMID:32256776

el at., 2?Aminothiazole Derivatives as Selective Allosteric Modulators of the Protein Kinase CK2. 2. Structure-Based Optimization and Investigation of Effects Specific to the Allosteric Mode of Action.In J Med Chem.On 2019 Feb 28 by Bestgen B, Kufareva I et al..PMID:30689946, , (2019)

PMID:30689946

el at., Force-dependent allostery of the α-catenin actin-binding domain controls adherens junction dynamics and functions.In Nat Commun. On 2018 Nov 30 by Ishiyama N, Sarpal R et al..PMID: 30504777, , (2018)

PMID:30504777

el at., Helicobacter pylori Induces Cell Migration and Invasion Through Casein Kinase 2 in Gastric Epithelial Cells.In Helicobacter on 2014 Dec by Yeo Song Lee, Do Yeon Lee et al..PMID: 25052887, , (2014)

PMID:25052887

el at., EGFR-induced and PKCθ monoubiquitylation-dependent NF-ι-• B activation upregulates PKM2 expression and promotes tumorigenesis. In Mol Cell on 2012 Dec 14 by

Weiwei Yang, Yan Xia, et al..PMID: 23123196, , (2012)

PMID:23123196

Ji H, Wang J, Nika H el at., EGF-induced ERK activation promotes CK2-mediated disassociation of alpha-Catenin from beta-Catenin and transactivation of beta-Catenin., Mol Cell, 36(4):547-559(2009)

PMID:19941816

el at., EGF-induced ERK activation promotes CK2-mediated disassociation of alpha-Catenin from beta-Catenin and transactivation of beta-Catenin. In Mol Cell on 2009 Nov 25 by Ji H, Wang J,et al..PMID:19941816, , (2009)

PMID:19941816

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish as only and is not interface for account name of animals.