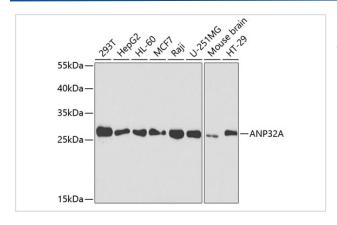
ANP32A Antibody

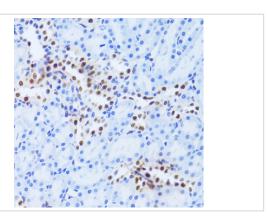
Catalog No: #33030

Package Size: #33030-1 50ul #33030-2 100ul

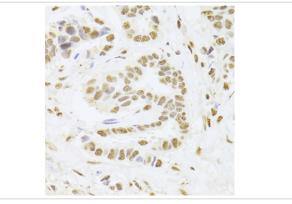
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

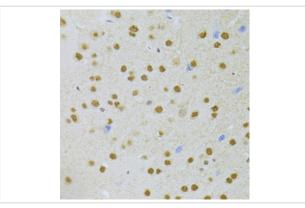

Description

Product Name	ANP32A Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB,IHC
Species Reactivity	Human,Mouse,Rat
Specificity	The antibody detects endogenous level of total ANP32A protein.
Immunogen Type	Recombinant Protein
Immunogen Description	Recombinant fusion protein of human ANP32A (NP_006296.1).
Target Name	ANP32A
Other Names	ANP32A;C15orf1;HPPCn;I1PP2A;LANP;MAPM;PHAP1;PHAP1;PP32
Accession No.	Uniprot:P39687GeneID:8125
SDS-PAGE MW	28kDa
Concentration	1.0mg/ml
Formulation	PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.


Application Details

WB 1:500 - 1:2000IHC 1:50 - 1:200


Images


Western blot analysis of extracts of various cell lines, using ANP32A antibody.

Immunohistochemistry of paraffin-embedded rat kidney using ANP32A Antibody.

Immunohistochemistry of paraffin-embedded human breast cancer using ANP32A Antibody.

Immunohistochemistry of paraffin-embedded mouse brain using ANP32A Antibody.

Background

Multifunctional protein that is involved in the regulation of many processes including tumor suppression, apoptosis, cell cycle progression or transcription. Promotes apoptosis by favouring the activation of caspase-9/CASP9 and allowing apoptosome formation. In addition, plays a role in the modulation of histone acetylation and transcription as part of the INHAT (inhibitor of histone acetyltransferases complex. Inhibits the histone-acetyltransferase activity of EP300/CREBBP (CREB-binding protein and EP300/CREBBP-associated factor by histone masking. Preferentially binds to unmodified histone H3 and sterically inhibiting its acetylation and phosphorylation leading to cell growth inhibition. Participates in other biochemical processes such as regulation of mRNA nuclear-to-cytoplasmic translocation and stability by its association with ELAVL1 (Hu-antigen R. Plays a role in E4F1-mediated transcriptional repression as well as inhibition of protein phosphatase 2A.

Published Papers

el at., Paroxetine Attenuates Cardiac Hypertrophy Via Blocking GRK2 and ADRB1 Interaction in Hypertension. In J Am Heart Assoc on 2021 Jan 5 by Xuejing Sun, Mengli Zhou,

et al..PMID:33372534, , (2021)

PMID:33372534

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in this research deep only and is not interior deep in right and or animals.