Product Datasheet

Caveolin-1(Phospho-Tyr14) Antibody

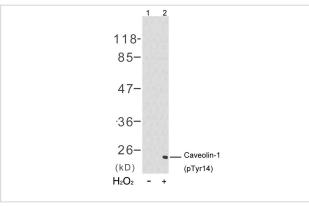
Catalog No: #11090

Package Size: #11090-1 50ul #11090-2 100ul

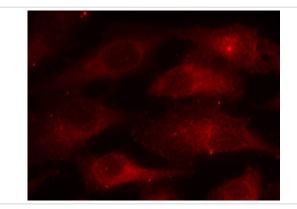
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

Description

Product Name	Caveolin-1(Phospho-Tyr14) Antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Antibodies were produced by immunizing rabbits with synthetic phosphopeptide and KLH conjugates.
	Antibodies were purified by affinity-chromatography using epitope-specific phosphopeptide. Non-phospho
	specific antibodies were removed by chromatogramphy using non-phosphopeptide.
Applications	WB IF
Species Reactivity	Human;Mouse;Rat
Specificity	The antibody detects endogenous level of Caveolin-1 only when phosphorylated at tyrosine 14.
Immunogen Type	Peptide-KLH
Immunogen Description	Peptide sequence around phosphorylation site of tyrosine 14 (H-L-Y(p)-T-V) derived from Human
	CAVEOLIN-1.
Conjugates	Unconjugated
Target Name	Caveolin-1
Modification	Phospho
Other Names	CAV; CAV1;
Accession No.	Swiss-Prot: Q03135NCBI Protein: NP_001166366.1
Concentration	1.0mg/ml
Formulation	Supplied at 1.0mg/mL in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02%
	sodium azide and 50% glycerol.
Storage	Store at -20°C for long term preservation (recommended). Store at 4°C for short term use.


Application Details

Predicted MW: 24kd


Western blotting: 1:500~1:1000

Immunofluorescence: 1:100~1:200

Images

Western blot analysis of extracts from 3T3 cells untreated(lane 1) or treated with H2O2(lane 2) using Caveolin-1(Phospho-Tyr14) Antibody #11090.

Immunofluorescence staining of methanol-fixed Hela cells using Caveolin-1(Phospho-Tyr14) Antibody #11090.

Background

The scaffolding protein encoded by Caveolin-1 is the main component of the caveolae plasma membranes found in most cell types. The protein links integrin subunits to the tyrosine kinase FYN, an initiating step in coupling integrins to the Ras-ERK pathway and promoting cell cycle progression. The gene is a tumor suppressor gene candidate and a negative regulator of the Ras-p42/44 MAP kinase cascade. CAV1 and CAV2 are located next to each other on chromosome 7 and express colocalizing proteins that form a stable hetero-oligomeric complex. By using alternative initiation codons in the same reading frame, two isoforms (a and beta) are encoded by a single transcript from this gene.

Zhang Y, et al. (2005) Mol Cell Proteomics. 4(9): 1240-1250.

Labrecque L, et al. (2004) J Biol Chem. 279(50): 52132-52140.

Fielding PE, et al. (2004) Biochemistry. 43(9): 2578-2586.

Labrecque L, et al. (2003) Mol Biol Cell. 14(1): 334-347.

Maggi D, et al. (2002) Biochem Biophys Res Commun. 295(5): 1085-1089.

Published Papers

Andrη— ε Bento-Abreu, Ana Velasco, Erica Polo-Hernη— ε ndez el at., Albumin endocytosis via megalin in astrocytes is caveola- and Dab-1 dependent and is required for the synthesis of the neurotrophic factor oleic acid., Journal of Neurochemistry, 111 (1), Pages 49 - 60(2009)

PMID:19656258

el at., Podosomes in Migrating Microglia: Components and Matrix Degradation.In J Neuroinflammation on 2012 Aug 8 by Catherine Vincent, Tamjeed A Siddiqui, et al..PMID:22873355, , (2012)

PMID:22873355

el at., Albumin endocytosis via megalin in astrocytes is caveolaι ζ• nd Dabı ? dependent and is required for the synthesis of the neurotrophic factor oleic acid. In J Neurochem

on 2009 Oct by Andrθ Bento-Abreu, Ana Velasco, et al..PMID:19656258, , (2009)

PMID:19656258

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account name of animals.