Product Datasheet

AFX(Phospho-Ser197) Antibody

Catalog No: #11137

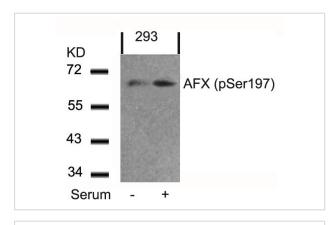
Package Size: #11137-1 50ul #11137-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

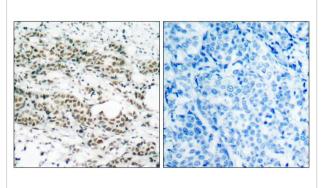
Description

Product Name	AFX(Phospho-Ser197) Antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Antibodies were produced by immunizing rabbits with synthetic phosphopeptide and KLH conjugates.
	Antibodies were purified by affinity-chromatography using epitope-specific phosphopeptide. Non-phospho
	specific antibodies were removed by chromatogramphy using non-phosphopeptide.
Applications	WB IHC IF
Species Reactivity	Human;Mouse;Rat
Specificity	The antibody detects endogenous level of AFX only when phosphorylated at serine 197.
Immunogen Type	Peptide-KLH
Immunogen Description	Peptide sequence around phosphorylation site of serine 197 (A-A-S(p)-M-D) derived from Human AFX.
Conjugates	Unconjugated
Target Name	AFX
Modification	Phospho
Other Names	AFX; FOXO4; AFX1; Afxh;
Accession No.	Swiss-Prot: P98177NCBI Protein: NP_001164402.1
Concentration	1.0mg/ml
Formulation	Supplied at 1.0mg/mL in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02%
	sodium azide and 50% glycerol.
Storage	Store at -20°C for long term preservation (recommended). Store at 4°C for short term use.

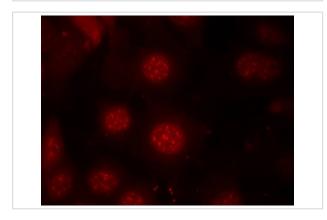
Application Details


Predicted MW: 65kd

Western blotting: 1:500~1:1000


Immunohistochemistry: 1:50~1:100

Immunofluorescence: 1:100~1:200


Images

Western blot analysis of extracts from 293 cells untreated or treated with serum using AFX(Phospho-Ser197) Antibody #11137.

Immunohistochemical analysis of paraffin-embedded human breast carcinoma tissue using AFX(Phospho-Ser197) Antibody #11137(left) or the same antibody preincubated with blocking peptide(right).

Immunofluorescence staining of methanol-fixed MCF7 cells using AFX(Phospho-Ser197) Antibody #11137.

Background

Transcription factor involved in the regulation of the insulin signaling pathway. Binds to insulin-response elements (IREs) and can activate transcription of IGFBP1. Down-regulates expression of HIF1A and suppresses hypoxia-induced transcriptional activation of HIF1A-modulated genes. Also involved in negative regulation of the cell cycle.

Di Maira G, et al. (2005)Cell Death Differ; 12(6): 668-77.

Essers MA, et al. EMBO J 2004 Nov. 11.

Brownawell AM, (2001) Mol Cell Biol; 21(10): 3534-46.

Kops GJ, et al. (1999) Nature; 398(6728): 630-4.

Published Papers

el at., Activation of Akt/FoxO signaling pathway contributes to induction of neuroprotection against transient global cerebral ischemia by hypoxic pre-conditioning in adult rats.In J Neurochem on 2010 Aug by Zhan L, Wang T, et al..PMID:20492357, , (2010)

PMID:20492357

el at., Activation of Akt/FoxO and inactivation of MEK/ERK pathways contribute to induction of neuroprotection against transient global cerebral ischemia by delayed hypoxic postconditioning in adult rats.In Neuropharmacology on 2012 Oct by Zhan L, Li D,et al..PMID:22749925, , (2012) PMID:22749925

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account name of animals.