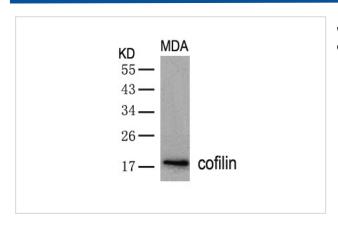
Product Datasheet

cofilin Antibody

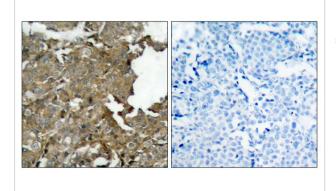
Catalog No: #21164

Package Size: #21164-1 50ul #21164-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	cofilin Antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Antibodies were produced by immunizing rabbits with synthetic peptide and KLH conjugates. Antibodies were
	purified by affinity-chromatography using epitope-specific peptide.
Applications	WB IHC
Species Reactivity	Human;Mouse;Rat
Specificity	The antibody detects endogenous level of total cofilin protein.
Immunogen Type	Peptide-KLH
Immunogen Description	Peptide sequence around aa. 1~5 (M-A-S-G-V) derived from Human cofilin.
Conjugates	Unconjugated
Target Name	cofilin
Other Names	CFL; CFL1; COF1; Cofilin;
Accession No.	Swiss-Prot: P23528NCBI Protein: NP_005498.1
Concentration	1.0mg/ml
Formulation	Supplied at 1.0mg/mL in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02%
	sodium azide and 50% glycerol.
Storage	Store at -20°C for long term preservation (recommended). Store at 4°C for short term use.


Application Details

Predicted MW: 19kd
Western blotting: 1:500~1:1000
Immunohistochemistry: 1:50~1:100

Images

Western blot analysis of extracts from MDA cells using cofilin(Ab-3) Antibody #21164.

Immunohistochemical analysis of paraffin-embedded human breast carcinoma tissue using cofilin(Ab-3) Antibody #21164(left) or the same antibody preincubated with blocking peptide(right).

Background

Controls reversibly actin polymerization and depolymerization in a pH-sensitive manner. It has the ability to bind G- and F-actin in a 1:1 ratio of cofilin to actin. It is the major component of intranuclear and cytoplasmic actin rods.

Kobayashi M, et al. (2006) EMBO J 25(4): 713-26.

Wang Y, et al. (2005)Biol Chem 280(13): 12683-9.

Smith-Beckerman DM, et al. (2005) Mol Cell Proteomics: 156-68.

Published Papers

el at., DGCR6L, a novel PAK4 interaction protein, regulates PAK4-mediated migration of human gastric cancer cell via LIMK1. In Int J Biochem Cell Biol on 2010 Jan by Xiaodong Li, Qiang Ke, et al..PMID: 19778628, , (2010)

PMID:19778628

el at., Regulation of cofilin phosphorylation and asymmetry in collective cell migration during morphogenesis. In Development on 2011 Feb by Lijun Zhang, Jun Luo, et al..PMID:

21205790, , (2011)

PMID:21205790

el at., A Cardiomyocyte-Specific Wdr1 Knockout Demonstrates Essential Functional Roles for Actin Disassembly during Myocardial Growth and Maintenance in Mice.In Am J Pathol on 2014 Jul by Baiyin Yuan, Ping Wan et al..PMID: 24840128, , (2014)

PMID:24840128

el at., Cofilin-mediated actin dynamics promotes actin bundle formation during Drosophila bristle development. In Mol Biol Cell on 2016 Aug 15 by Jing Wu, Heng Wang, et al.. PMID:27385345, , (2016)

PMID:27385345

el at., Fascin regulates nuclear actin during Drosophila oogenesis. In Mol Biol Cell on 2016 Oct 1 by Daniel J Kelpsch, Christopher M Groen, et al..PMID:27535426, , (2016)

PMID:27535426

el at., Platelet-dependent signaling and Low Molecular Weight Protein Tyrosine Phosphatase expression promote aggressive phenotypic changes in gastrointestinal cancer cells. In Biochim Biophys Acta Mol Basis Dis on 2022 Jan 1 by Alessandra V S Faria, Bingting Yu, et al..PMID: 34610471, , (2022)

PMID:34610471

el at., Physical Training vs. Perindopril Treatment on Arterial Stiffening of Spontaneously Hypertensive Rats: A Proteomic Analysis and Possible MechanismsInBiomedicinesOn2023 May 6byDanyelle Siqueira Miotto 1, Francine Duchatsch et al..PMID: 37239052, , (2023)

PMID:37239052

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account name of animals.