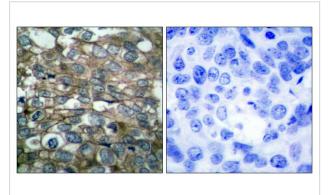
EGFR Antibody

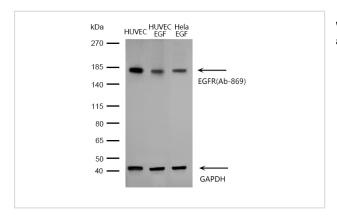
Catalog No: #21222

Package Size: #21222-1 50ul #21222-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	EGFR Antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Antibodies were produced by immunizing rabbits with synthetic peptide and KLH conjugates. Antibodies were
	purified by affinity-chromatography using epitope-specific peptide.
Applications	WB;IHC
Species Reactivity	Human;Mouse;Rat
Specificity	The antibody detects endogenous level of total EGFR protein.
Immunogen Type	Peptide-KLH
Immunogen Description	Peptide sequence around aa.867~871 (K-E-Y-H-A) derived from Human EGFR.
Conjugates	Unconjugated
Target Name	EGFR
Other Names	Receptor tyrosine-protein kinase ErbB-1; ERBB1;
Accession No.	Swiss-Prot: P00533NCBI Protein: NP_005219.2
Calculated MW	134 kDa
SDS-PAGE MW	175 kDa
Concentration	1.0mg/ml
Formulation	Supplied at 1.0mg/mL in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02%
	sodium azide and 50% glycerol.
Storage	Store at -20°C for long term preservation (recommended). Store at 4°C for short term use.


Application Details

WB 1:500-1:2000; IHC 1:100-1:300;

Images

Immunohistochemical analysis of paraffin-embedded human breast carcinoma tissue using EGFR(Ab-869) Antibody #21222(left) or the same antibody preincubated with blocking peptide(right).

Western blot analysis of lysates from HUVEC, HUVEC EGF and Hela EGF, using EGFR Antibody.

Background

Receptor for EGF, but also for other members of the EGF family, as TGF-a, amphiregulin, betacellulin, heparin-binding EGF-like growth factor, GP30 and vaccinia virus growth factor. Is involved in the control of cell growth and differentia

Gingras AC, et al. (1998) Genes Dev 12(4): 502-513.

Brugarolas J, et al. (2004) Genes Dev 18(23): 2893-2904.

Kumar V, et al. (2000) EMBO J 19(5): 1087-1097.

Moody CA, et al. (2005) J Virol 79(9): 5499-5506.

Burnett PE, et al. (1998) Proc Natl Acad Sci U S A 95(4): 1432-1437.

Published Papers

el at., EGFR-induced and PKC0 monoubiquitylation-dependent NF-I-• B activation upregulates PKM2 expression and promotes tumorigenesis. In Mol Cell on 2012 Dec 14 by

Weiwei Yang, Yan Xia, et al..PMID: 23123196, , (2012)

PMID:23123196

el at., sZIP, an alternative splice variant of ZIP, antagonizes transcription repression and growth inhibition by ZIP. In J Biol Chem on 2010 May 7 by Wenhua Yu, Ruifang Li, et

al..PMID: 20233718, , (2010)

PMID:20233718

el at., Aldosterone induces myofibroblast EGF secretion to regulate epithelial colonic permeability. In Am J Physiol Cell Physiol on 2013 May 1 by Lluθ sa Mirθ E, Anna Pθ rez-Bosque, et al..PMID:23467299, , (2013)

PMID:23467299

el at., Secreted and O-GlcNAcylated MIF binds to the human EGF receptor and inhibits its activation.In Nat Cell Biol on 2015 Oct by Yanhua Zheng, Xinjian Li et al..PMID:26280537 , , (2015)

PMID:26280537

el at., A thiazole-derived oridonIn analogue exhibits antitumor activity by directly and allosterically InhibitIng STAT3. In J Biol Chem on 2019 Nov 15;by Shen X, Zhao L,et al..PMID:31594861, , (2019)

PMID:31594861

Fr η — ϵ " d η — ϵ " ric Couture, Fran?ois Di η Anjou, Roxane Desjardins el at., Role of Proprotein Convertases in Prostate Cancer Progression, Neoplasia, 14: 1032 η — C1042(2012)

PMID:23226097

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account name of animals.