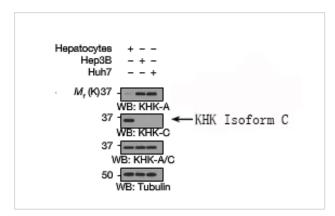
KHK Isoform C Antibody

Catalog No: #21709

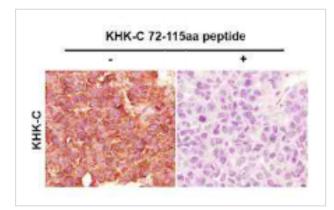
Package Size: #21709-1 50ul #21709-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

Description


Product Name	KHK Isoform C Antibody
Purification	Antibodies were produced by immunizing rabbits with synthetic peptide and KLH conjugates. Antibodies were
	purified by affinity-chromatography using epitope-specific peptide.
Applications	WB IHC
Species Reactivity	Hu
Specificity	The antibody detects endogenous level of total KHK Isoform C protein.
Immunogen Description	Peptide sequence around aa.102~106 (N-N-S-N-G) derived from Human KHK Isoform C.
Other Names	Ketohexokinase; Hepatic fructokinase; KHK
Accession No.	Swiss-Prot#: P50053-1NCBI Gene ID: 3795NCBI Protein#: NP_000212.1
Concentration	1.0mg/mL
Formulation	Supplied at 1.0mg/mL in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02%
	sodium azide and 50% glycerol.
Storage	Store at -20°C

Application Details


Western blotting: 1:500-1000

Immunohistochemistry: 1:50~1:100

Images

Western blot analysis of extracts from Hepatocytee, Hep3B and Huh7 cells using KHK Isoform C Antibody #21709. (Reference: Nat Cell Biol. 2016 May;18(5):561-71.)

Immunohistochemical analysis of tumors derived from Huh-7cells using KHK Isoform C Antibody #21709(left) or the same antibody preincubated with blocking peptide (right). (Reference: Nat Cell Biol. 2016 May;18(5):561-71.)

Background

Catalyzes the phosphorylation of the ketose sugar fructose to fructose-1-phosphate.

Bonthron D.T., Brady N., Donaldson I.A., Steinmann B.Hum. Mol. Genet. 3:1627-1631(1994)

Published Papers

Li X, Qian X, Peng LX et al el at., A splicing switch from ketohexokinase-C to ketohexokinase-A drives hepatocellular carcinoma formation, Nat Cell Biol., 18(5):561-71.(2016 May)

PMID:27088854

el at., A splicing switch from ketohexokinase-C to ketohexokinase-A drives hepatocellular carcinoma formation. In Nat Cell Biol on 2016 Ma by Xinjian Li, Xu Qian et al..PMID:27088854, (2016)

PMID:27088854

el at., The RNA-Binding Protein A1CF Regulates Hepatic Fructose and Glycerol Metabolism via Alternative RNA Splicing. In Cell Rep on 2019 Oct 8 by Kostas C Nikolaou, Hasan Vatandaslar, et al..PMID: 31597092

, , (2019)

PMID:31597092

el at., The small intestine shields the liver from fructose-induced steatosis. In Nat Metab on 2020 Jul by Cholsoon Jang, Shogo Wada, et al..PMID: 32694791, , (2020)

PMID:32694791

el at., Ketohexokinase-A acts as a nuclear protein kinase that mediates fructose-induced metastasis in breast cancer. In Nat Commun on 2020 Oct 28 by Jiyoung Kim, Jengmin Kang, et al..PMID:33116123, , (2020)

PMID:33116123

el at., Deletion of Fructokinase in the Liver or in the Intestine Reveals Differential Effects on Sugar-Induced Metabolic Dysfunction. In Cell Metab on 2020 Jul 7

by Ana Andres-Hernando, David J Orlicky, et al..PMID:32502381, , (2020)

PMID:32502381

el at., Non-hematopoietic IL-4RδΌ expression contributes to fructose-driven obesity and metabolic sequelae. In Int J Obes (Lond) on 2021 Nov by Michelle S M A Damen, Traci E Stankiewicz,et al..PMID:34302121, , (2021)

PMID:34302121

el at., Ketohexokinase inhibition improves NASH by reducing fructose-induced steatosis and fibrogenesis. In JHEP Rep on 2020 Nov 20 by Emma L Shepherd, Raquel Saborano, et al..PMID:33490936, , (2021)

PMID:33490936

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account name of animals.