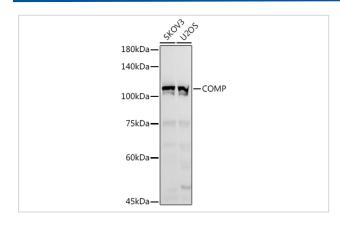
COMP Antibody

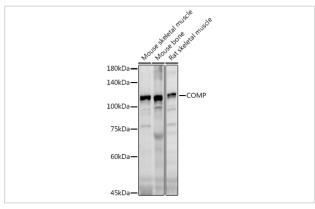
Catalog No: #33060

Package Size: #33060-1 50ul #33060-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

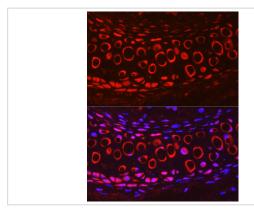

Description

Product Name	COMP Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB,IF
Species Reactivity	Human;Mouse;Rat
Specificity	The antibody detects endogenous level of total COMP protein.
Immunogen Type	Recombinant Protein
Immunogen Description	Recombinant fusion protein of human COMP (NP_000086.2).
Conjugates	Unconjugated
Target Name	COMP
Other Names	COMP;EDM1;EPD1;MED;PSACH;THBS5;TSP5
Accession No.	Uniprot:P49747GeneID:1311
SDS-PAGE MW	110KDa
Concentration	1.0mg/ml
Formulation	PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.


Application Details

WB□1:500 - 1:2000IF□1:10 - 1:100


Images


Western blot analysis of extracts of various cell lines, using COMP antibody.

Western blot analysis of extracts of various cell lines, using COMP antibody.

Immunofluorescence analysis of Rat cartilage using COMP Rabbit pAb.

Immunofluorescence analysis of Mouse cartilage using COMP Rabbit pAb.

Background

The protein encoded by this gene is a noncollagenous extracellular matrix (ECM) protein. It consists of five identical glycoprotein subunits, each with EGF-like and calcium-binding (thrombospondin-like) domains. Oligomerization results from formation of a five-stranded coiled coil and disulfides. Binding to other ECM proteins such as collagen appears to depend on divalent cations. Contraction or expansion of a 5 aa aspartate repeat and other mutations can cause pseudochondroplasia (PSACH) and multiple epiphyseal dysplasia (MED).

Published Papers

el at., The molecular mechanism study of COMP involved in the articular cartilage damage of Kashin-Beck disease. In Bone Joint Res on 2020 Sep 20 by Mei Ma, Xiao Liang, et al..PMID:33005397, , (2020)

PMID:33005397

el at., Electroacupuncture improves motor function of rats with osteoarthritis by alleviating joint inflammation through the Wnt-7B/β-catenin signaling pathwayInNan Fang Yi Ke Da Xue Xue BaoOn2023 Apr 20byX Zheng?1,?S Gao et al..PMID: 37202195, , (2023)

PMID:37202195

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish as only and is not interface for account name of animals.