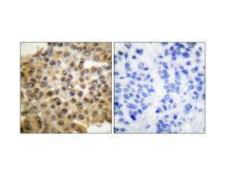
ERK1/2 Antibody

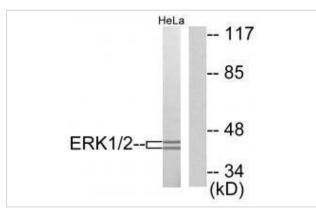
Catalog No: #33367

Package Size: #33367-1 50ul #33367-2 100ul

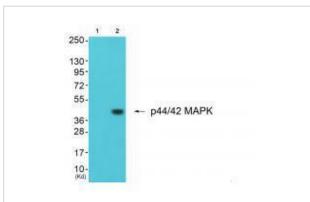
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

ERK1/2 Antibody
Rabbit
Polyclonal
The antibody was affinity-purified from rabbit antiserum by affinity-chromatography using epitope-specific
immunogen.
WB IHC
Human;Mouse;Rat
The antibody detects endogenous levels of total ERK1/2 protein.
Peptide
Synthesized peptide derived from human ERK1/2.
Unconjugated
ERK1/2
EC 2.7.11.24; Extracellular signal-regulated kinase 1; ERK-1; Insulin-stimulated MAP2 kinase; MAP kinase 1
Swiss-Prot: P27361NCBI Gene ID: 5595
42,44kd
1.0mg/ml
Rabbit IgG in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02% sodium azide
and 50% glycerol.
Store at -20°C


Application Details

Western blotting: 1:500~1:3000
Immunohistochemistry: 1:50~1:100


Images

Immunohistochemical analysis of paraffin-embedded human breast carcinoma tissue, using ERK1/2 antibody #33367.

Western blot analysis of extracts from HeLa cells, using ERK1/2 antibody #33367.

Western blot analysis of extracts from K562 cells (Lane 2), using p44/42 MAPK antiobdy #33367. The lane on the left is treated with synthesized peptide.

Background

Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade plays also a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1) and a variety of other signaling-related molecules (like ARHGEF2, FRS2 or GRB10). Protein kinases (such as RAF1, RPS6KA1/RSK1, RPS6KA3/RSK2, RPS6KA2/RSK3, RPS6KA6/RSK4, SYK, MKNK1/MNK1, MKNK2/MNK2, RPS6KA5/MSK1, RPS6KA4/MSK2, MAPKAPK3 or MAPKAPK5) and phosphatases (such as DUSP1, DUSP4, DUSP6 or DUSP16) are other substrates which enable the propagation the MAPK/ERK signal to additional cytosolic and nuclear targets, thereby extending the specificity of the cascade.

Charleen T. Chu, Eur. J. Biochem., Jun 2004; 271: 2060 - 2066.

Youwei Jiang, PNAS, Aug 2001; 98: 10102.

Yu Zhao, J. Physiol., Sep 2003; 551: 691 - 703.

Georges Daoud, J. Physiol., Jul 2005; 566: 409 - 423.

Published Papers

el at., CD155 Cooperates with PD-1/PD-L1 to Promote Proliferation of Esophageal Squamous Cancer Cells via PI3K/Akt and MAPK Signaling Pathways. In Cancers (Basel) on 2022 Nov 15 by Xiyang Tan, Jie Yang, et al..PMID:36428703, , (2022)

PMID:36428703

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account name of animals.