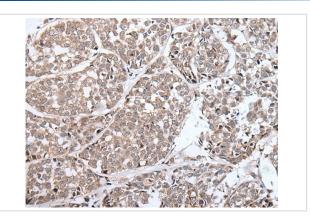
Product Datasheet

BLM Antibody

Catalog No: #43849

Package Size: #43849-1 50ul #43849-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


Description

Product Name	BLM Antibody
Host Species	Rabbit
Clonality	Polyclonal
Purification	Antigen affinity purification
Applications	IHC
Species Reactivity	Hu
Specificity	The antibody detects endogenous levels of total BLM protein.
Immunogen Type	peptide
Immunogen Description	Synthetic peptide of human BLM
Target Name	BLM
Other Names	BS; RECQ2; RECQL2; RECQL3
Accession No.	Swiss-Prot#: P54132NCBI Gene ID: 641
Concentration	0.8mg/ml
Formulation	Rabbit IgG in pH7.4 PBS, 0.05% NaN3, 40% Glycerol.
Storage	Store at -20°C

Application Details

Immunohistochemistry: 1: 20-100

Images

The image on the left is immunohistochemistry of paraffin-embedded Human esophagus cancer tissue using BLM Antibody at dilution 1/35, on the right is treated with synthetic peptide. (Original magnification: x200)

Background

The Bloom syndrome gene product is related to the RecQ subset of DExH box-containing DNA helicases and has both DNA-stimulated ATPase and ATP-dependent DNA helicase activities. Mutations causing Bloom syndrome delete or alter helicase motifs and may disable the 3'-5' helicase activity. The normal protein may act to suppress inappropriate recombination.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.		