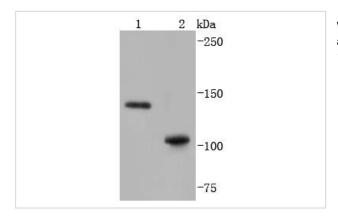
SHIP Rabbit mAb

Catalog No: #48725

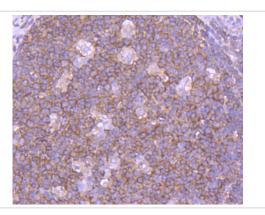
Package Size: #48725-1 50ul #48725-2 100ul

Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

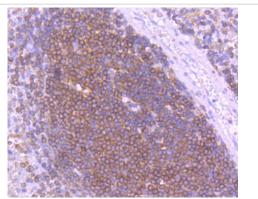

Description	
Product Name	SHIP Rabbit mAb
Host Species	Recombinant Rabbit
Clonality	Monoclonal antibody
Clone No.	SY11-08
Purification	ProA affinity purified
Applications	WB, IHC, IP, FC
Species Reactivity	Hu
Immunogen Description	recombinant protein
Other Names	Inositol polyphosphate 5 phosphatase of 145kDa antibody 4 antibody 5-trisphosphate 5-phosphatase 1
	antibody hp51CN antibody Inositol polyphosphate 5 phosphatase 145kDa antibody Inositol polyphosphate 5
	phosphatase antibody Inositol polyphosphate-5-phosphatase of 145 kDa antibody INPP5D antibody
	MGC104855 antibody MGC142140 antibody MGC142142 antibody p150Ship antibody Phosphatidylinositol
	3,4,5 trisphosphate 5 phosphatase 1 antibody Phosphatidylinositol-3 antibody SH2 containing inositol
	phosphatase isoform b antibody SH2 domain containing inositol 5' phosphatase 1 antibody SH2 domain
	containing inositol phosphatase 1 antibody SH2 domain-containing inositol phosphatase 1 antibody SH2
	domain-containing inositol-5"-phosphatase 1 antibody SHIP-1 antibody SHIP1 antibody SHIP1_HUMAN
	antibody Signaling inositol polyphosphate 5 phosphatase SIP 145 antibody SIP-145 antibody SIP145 antibody
Accession No.	Swiss-Prot#:Q92835
Calculated MW	133/109 kDa
Formulation	1*TBS (pH7.4), 1%BSA, 40%Glycerol. Preservative: 0.05% Sodium Azide.

Application Details

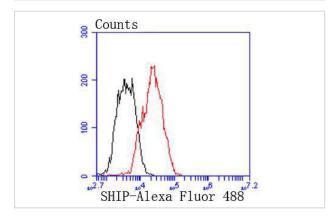
WB: 1:1,000IHC: 1:50-1:200FC: 1:50-1:100


Images

Storage



Western blot analysis of SHIP on different lysates using anti-SHIP antibody at 1/1,000 dilution. Positive control: Lane 1: Daudi Lane 2: THP-1


Store at -20°C

Immunohistochemical analysis of paraffin-embedded human tonsil tissue using anti-SHIP antibody. Counter stained with hematoxylin.

Immunohistochemical analysis of paraffin-embedded human spleen tissue using anti-SHIP antibody. Counter stained with hematoxylin.

Flow cytometric analysis of Raji cells with SHIP antibody at 1/50 dilution (red) compared with an unlabelled control (cells without incubation with primary antibody; black). Alexa Fluor 488-conjugated goat anti rabbit IgG was used as the secondary antibody

Background

The major translational product of the v-Fms oncogene, originally isolated from the McDonough strain of feline sarcoma virus, has been identified as a glycoprotein with intrinsic tyrosine kinase activity. The v-Fms human cellular homolog, c-Fms, has been molecularly cloned and mapped to band q34 on chromosome 5, and identified as the receptor for hematopoietic ligand, CSF-1. Ligand-induced activation of the intrinsic CSF-1R protein tyrosine kinase triggers its interaction with cytoplasmic effector molecules. One such effector molecule, SHIP-1 p145 (SH2-containing-inositol phosphatase), associates with activated Fms. SHIP-1 contains two phosphotyrosine-binding domains (PTB), a unique amino terminal SH2 domain, a proline-rich region, and two highly conserved motifs found among inositol phosphate 5-phosphatases. SHIP-1 displays both phosphatidylinositol 3,4,5-triphosphate and inositol 1,3,4,5-tetrakisphosphate polyphosphate 5-phosphatase activity. Evidence suggests that SHIP-1 may modulate Ras signaling in addition to inositol signaling pathways.

References

1. Honda F et al. The kinase Btk negatively regulates the production of reactive oxygen species and stimulation-induced apoptosis in human neutrophils. Nat Immunol 13:369-78 (2012). 2. McNulty S et al. The host phosphoinositide 5-phosphatase SHIP2 regulates dissemination of vaccinia virus. J Virol 85:7402-10 (2011).

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account name of animals.