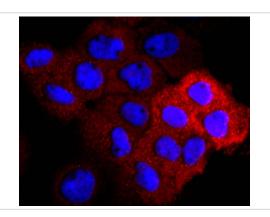
VEGF Receptor 2 Rabbit mAb

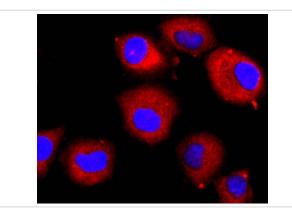
Catalog No: #48823

Package Size: #48823-1 50ul #48823-2 100ul

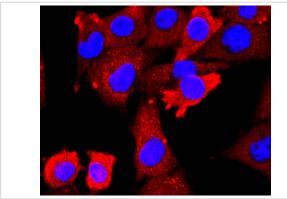
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

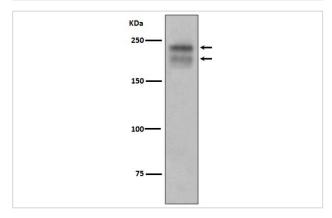

Description

· · · · · · · · · · · · · · · · · · ·	
Product Name	VEGF Receptor 2 Rabbit mAb
Clone No.	SU03-42
Purification	ProA affinity purified
Applications	WB, ICC, IHC, IP
Species Reactivity	Human
Immunogen Description	recombinant protein
Conjugates	Unconjugated
Other Names	CD309 antibody CD309 antigen antibody EC 2.7.10.1 antibody Fetal liver kinase 1 antibody FLK-1 antibody
	FLK1 antibody FLK1, mouse, homolog of antibody Kdr antibody Kinase insert domain receptor (a type III
	receptor tyrosine kinase) antibody Kinase insert domain receptor antibody KRD1 antibody Ly73 antibody
	Protein tyrosine kinase receptor FLK1 antibody Protein-tyrosine kinase receptor flk-1 antibody soluble
	VEGFR2 antibody Tyrosine kinase growth factor receptor antibody Vascular endothelial growth factor receptor
	2 antibody VEGFR 2 antibody VEGFR antibody VEGFR-2 antibody VEGFR2 antibody VGFR2_HUMAN
	antibody
Accession No.	Swiss-Prot#:P35968
Calculated MW	210,230 kDa
Formulation	1*TBS (pH7.4), 1%BSA, 40%Glycerol. Preservative: 0.05% Sodium Azide.
Storage	Store at -20°C


Application Details

WB: 1:500-1:1000 IHC: 1:50-1:100 ICC: 1:50-1:200


Images


ICC staining VEGF Receptor 2 in A431 cells (red). The nuclear counter stain is DAPI (blue). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS.

ICC staining VEGF Receptor 2 in HUVEC cells (red). The nuclear counter stain is DAPI (blue). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS.

ICC staining VEGF Receptor 2 in PMVEC cells (red). The nuclear counter stain is DAPI (blue). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS.

Western blot analysis of VEGFR2 expression in Human placenta lysate.

Background

Three cell membrane receptor tyrosine kinases, Flt (also designated VEGF-R1) (1-3), Flk-1 (also designated VEGF-R2) (4-6) and Flt-4, putatively involved in the growth of endothelial cells, are characterized by the presence of seven immunoglobulin-like sequences in their extracellular domain. These receptors exhibit high degrees of sequence relatedness to each other as well as lesser degrees of relatedness to the class III receptors including CSF-1/Fms, PDGR, SLFR/Kit and Flt-3/Flk-2. Two members of this receptor class, Flt-1 and Flk-1, have been shown to represent high affinity receptors for vascular endothelial growth factors (VEGFs) (3,5). On the basis of structural similarity to Flt and Flk-1, it has been speculated that Flt-4 might represent a third receptor for either VEGF or a VEGF-related ligand.

References

- 1. Li W et al. Preliminary in vitro and in vivo assessment of a new targeted inhibitor for choroidal neovascularization in age-related macular degeneration. Drug Des Devel Ther 10:3415-3423 (2016).
- 2. Wang TC et al. Characterization of highly proliferative secondary tumor clusters along host blood vessels in malignant glioma. Mol Med Rep 12:6435-44 (2015).

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account name of animals.