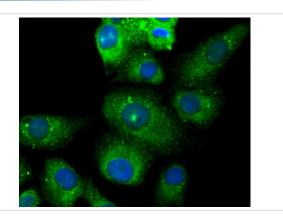
TMS1 Rabbit mAb

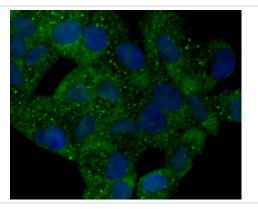
Catalog No: #49077

Package Size: #49077-1 50ul #49077-2 100ul

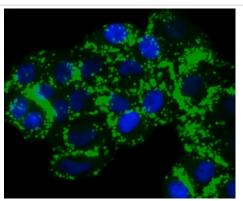
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

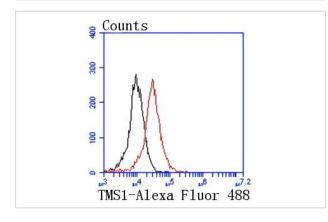

Description

Product Name	TMS1 Rabbit mAb
Host Species	Recombinant Rabbit
Clonality	Monoclonal antibody
Clone No.	SN07-10
Purification	ProA affinity purified
Applications	WB, ICC/IF, FC, IHC-P
Species Reactivity	Human
Immunogen Description	recombinant protein
Conjugates	Unconjugated
Other Names	Apoptosis associated speck like protein containing a CARD antibody Apoptosis-associated speck-like protein
	containing a CARD antibody ASC antibody ASC_HUMAN antibody CARD 5 antibody CARD5 antibody
	Caspase recruitment domain containing protein 5 antibody Caspase recruitment domain protein 5 antibody
	Caspase recruitment domain-containing protein 5 antibody hASC antibody MGC10332 antibody PYCARD
	antibody PYD and CARD domain containing antibody PYD and CARD domain containing protein antibody
	PYD and CARD domain-containing protein antibody Target of methylation induced silencing 1 antibody Target
	of methylation-induced silencing 1 antibody TMS 1 antibody TMS antibody TMS1 antibody
Accession No.	Swiss-Prot#:Q9ULZ3
Calculated MW	22 kDa
Formulation	1*TBS (pH7.4), 1%BSA, 40%Glycerol. Preservative: 0.05% Sodium Azide.
Storage	Store at -20°C


Application Details

WB: 1:500-1:1000ICC: 1:100-1:500 IHC-P: 1:50-1:400FC: 1:50-1:100


Images


ICC staining TMS1 in A549 cells (green). The nuclear counter stain is DAPI (blue). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS.

ICC staining TMS1 in Hela cells (green). The nuclear counter stain is DAPI (blue). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS.

ICC staining TMS1 in HepG2 cells (green). The nuclear counter stain is DAPI (blue). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS.

Flow cytometric analysis of 293 cells with TMS1 antibody at 1/50 dilution (red) compared with an unlabelled control (cells without incubation with primary antibody; black). Alexa Fluor 488-conjugated goat anti rabbit IgG was used as the secondary antibody

Background

The death domain (DD) superfamily of proteins share one or more of the following domains: the DD, DED (death-effector domain), CARD (caspase-recruitment domain) and PYD (Pyrin domain). Each of these domains is characterized by a canonical death domain fold, which consists of a bundle of five or six antiparallel α-helices. As their names suggest, these domains play prominent roles in programmed cell death. Caspase-associated recruitment domains (CARDs) mediate the interaction between adaptor proteins such as Apaf-1 and the proform of caspases (e.g., CASP9) participating in apoptosis. ASC (apoptosis-associated speck-like protein containing a CARD, also known as TMS1or PYCARD) is a member of the CARD-containing adaptor protein family. ASC is a 195 amino acid protein, containing a N-terminal Pyrin-like domain (PYD) and an 87 residue C-terminal CARD. This motif is characteristic of numerous proteins involved in apoptotic signaling. ASC2 (apoptosis-associated speck-like protein containing a CARD 2), also known as Pyrin-only protein 1 or PADD-only protein 1, is an 89 amino acid member of the DD superfamily that contains one Pyrin domain. Localized to the cytoplasm, ASC2 interacts with ASC to modulate NF-κB and pro-caspase-1 regulation.

References

1. Ataide, MA. et al. Malaria-induced NLRP12/NLRP3-dependent caspase-1 activation mediates inflammation and hypersensitivity to bacterial superinfection. PLoS pathogens 10: e1003885 (2014). 2. Liu, D. et al. Activation of the Nlrp3 inflammasome by mitochondrial reactive oxygen species: a novel mechanism of albumin-induced tubulointerstitial inflammation. The international journal of biochemistry & cell biology 57: 7-19 (2014).

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account name of animals.