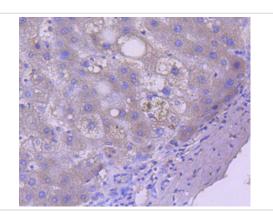
Caspase 5 Rabbit mAb

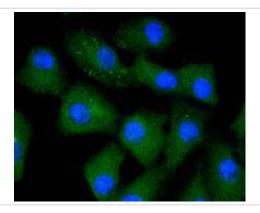
Catalog No: #49138

Package Size: #49138-1 50ul #49138-2 100ul

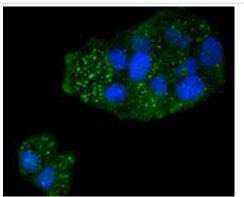
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

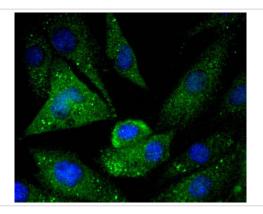

Description

Product Name	Caspase 5 Rabbit mAb
Host Species	Recombinant Rabbit
Clonality	Monoclonal antibody
Clone No.	SD203-2
Purification	ProA affinity purified
Applications	WB, ICC/IF, IHC, IP
Species Reactivity	Hu
Immunogen Description	recombinant protein
Other Names	Apoptosis related cysteine protease antibody CASP-5 antibody CASP5 antibody CASP5_HUMAN antibody
	Caspase-5 subunit p10 antibody ICE(rel)-III antibody ICERELIII antibody ICH 3 antibody ICH 3 protease
	antibody Protease ICH-3 antibody Protease TY antibody TY antibody TY protease antibody
Accession No.	Swiss-Prot#:P51878
Calculated MW	47 kDa
Formulation	1*TBS (pH7.4), 1%BSA, 40%Glycerol. Preservative: 0.05% Sodium Azide.
Storage	Store at -20°C


Application Details

WB: 1:500-1:1000IHC: 1:50-1:200ICC: 1:50-1:200


Images


Immunohistochemical analysis of paraffin-embedded human liver tissue using anti-Caspase 5 antibody. Counter stained with hematoxylin.

ICC staining Caspase 5 in A549 cells (green). The nuclear counter stain is DAPI (blue). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS.

ICC staining Caspase 5 in Hela cells (green). The nuclear counter stain is DAPI (blue). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS.

ICC staining Caspase 5 in SHG-44 cells (green). The nuclear counter stain is DAPI (blue). Cells were fixed in paraformaldehyde, permeabilised with 0.25% Triton X100/PBS.

Background

Caspases are cysteine proteases which play important roles in the activation of cytokines and in apoptosis. The ICE subfamily of caspases comprises peptides closely related to caspase-1, which promotes maturation of interleukin 1 β (IL-1 β) and interleukin-18 (IL-18) by proteolytic cleavage of precursor forms to generate biologically active peptides. Both caspase-4 and caspase-5 are members of the caspase-1 subfamily, and are more closely related to each other than to other homologues. Caspase-5 (also designated ICErel-III, TY, ICH-3 and caspase-12 in mouse), can cleave its own precursor, an activity that requires the cysteine 245 residue. Frameshift mutations in caspase-5 have been identified in MMP tumors of the endometrium, colon, and stomach, indicating the caspase-5 may be a new target gene in the microsatellite mutator pathway for cancer. The human caspase 5 gene maps to chromosome 11q22.2-q22.3 and encodes a protein whose expression is barely detectable in most tissues except brain, with highest expression levels being found in lung, liver and skeletal muscle.

References

1. Trojan J, et al. 2004. BAX and caspase-5 frameshift mutations and spontaneous apoptosis in colorectal cancer with microsatellite instability. Int J Colorectal Dis. Nov;19(6):538-44. 2. Manchado E et al. 2010. Targeting Mitotic Exit Leads to Tumor Regression In Vivo: Modulation by Cdk1, Mastl, and the PP2A/B55a,d Phosphatase. Cancer Cell 18:641-54.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account name of animals.