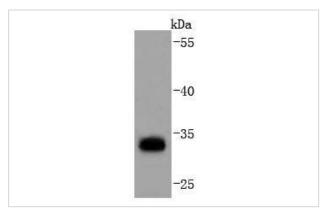
PD-L1 Rabbit mAb

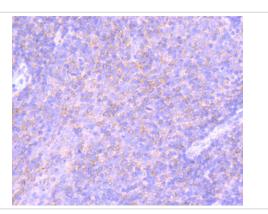
Catalog No: #49251

Package Size: #49251-1 50ul #49251-2 100ul

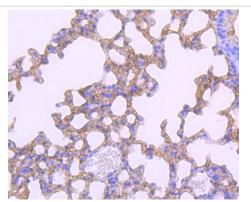
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com


$\overline{}$			
1	escri	ınt	ınn
$\boldsymbol{\nu}$	COUL	ιρι	ווטו

Product Name	PD-L1 Rabbit mAb	
Host Species	Recombinant Rabbit	
Clonality	Monoclonal antibody	
Clone No.	JJ08-95	
Purification	ProA affinity purified	
Applications	WB, IHC	
Species Reactivity	Human;Mouse;Rat	
Immunogen Description	recombinant protein	
Conjugates	Unconjugated	
Other Names	B7 H antibody B7 H1 antibody B7 homolog 1 antibody B7-H1 antibody B7H antibody B7H1 antibody CD	
	274 antibody CD274 antibody CD274 antigen antibody CD274 molecule antibody MGC142294 antibody	
	MGC142296 antibody OTTHUMP00000021029 antibody PD L1 antibody PD-L1 antibody PD1L1_HUMAN	
	antibody PDCD1 ligand 1 antibody PDCD1L1 antibody PDCD1LG1 antibody PDL 1 antibody PDL1	
	antibody Programmed cell death 1 ligand 1 antibody Programmed death ligand 1 antibody RGD1566211	
	antibody	
Accession No.	Swiss-Prot#:Q9NZQ7	
Calculated MW	33 kDa	
Formulation	1*TBS (pH7.4), 1%BSA, 40%Glycerol. Preservative: 0.05% Sodium Azide.	
Storage	Store at -20°C	


Application Details

WB: 1:1,000 IHC: 1:50-1:200


Images

Western blot analysis of PD-L1 on mouse heart lysates using anti-PD-L1 antibody at 1/1,000 dilution.

Immunohistochemical analysis of paraffin-embedded human tonsil tissue using anti-PD-L1 antibody. Counter stained with hematoxylin.

Immunohistochemical analysis of paraffin-embedded mouse lung tissue using anti-PD-L1 antibody. Counter stained with hematoxylin.

Background

Engagement of CD28 by B7-1 (CD80) or B7-2 (CD86) in the presence of antigen promotes T cell proliferation, cytokine production, differentiation of effector T cells, and the induction of Bcl-x, a promoter of T cell survival. Conversely, engagement of CTLA4 by B7-1 or B7-2 may inhibit proliferation and IL-2 production. Pdcd-1L1 (programmed cell death ligand-1), also known as B7-H1 or PD-L1, is 290 amino acid type I transmembrane protein which is 20% and 15% identical to B7-1 and B7-2, respectively. Pdcd-1L2 has immunoglobulin V-like and C-like domains and a 30 amino acid cytoplasmic tail. It does not bind CD28, cytotoxic T-lymphocyte A4 or ICOS (inducible co-stimulator). IL-2, although produced in small amounts, is required for the effect of Pdcd-1L1 co-stimulation. The gene which encodes Pdcd-1L1 maps to human chromosome 9p24. Pdcd-1L2 (programmed cell death ligand-2) is a 73 amino acid protein which contains a signal sequence, IgV- and IgC-like domains, a transmembrane region and a cytoplasmic region. The gene which encodes Pdcd-1L2 maps to human chromosome 9p24.2. The constitutive expression of Pdcd-1L1 and Pdcd-1L2 on paren-chymal cells of heart, lung and kidney suggests that the Pdcd-1-Pdcd-L system could provide unique negative signaling to help prevent autoimmune disease.

References

- 1. Jurado J.O., et al. 2008. Programmed death (PD)-1:PD-ligand 1/PD-ligand 2 pathway inhibits T cell effector functions during human tuberculosis. J. Immunol. 181:116-125.
- 2. Boorjian S.A., et al. 2008. T-cell coregulatory molecule expression in urothelial cell carcinoma: clinicopathologic correlations and association with survival. Clin. Cancer Res. 14:4800-4808.

Published Papers

Jingyao Li;Huixi Yi;Yuanyuan Fu;Jiani Zhuang;Zhixiong Zhan;Liyou Guo;Ji Zheng;Xiyong Yu;Dong-Yang Zhang el at., Biodegradable iridium coordinated nanodrugs potentiate photodynamic therapy and immunotherapy of lung cancer., , (2025)

PMID:39488900

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish as only and is not interface for account name of animals.