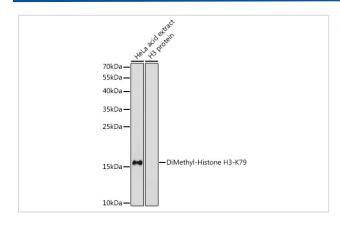
Histone H3K79me2 Polyclonal Antibody

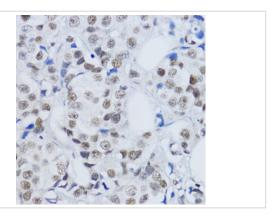
Catalog No: #HW012

Package Size: #HW012-1 50ul #HW012-2 100ul

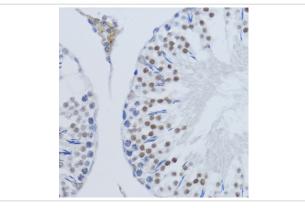
Orders: order@signalwayantibody.com Support: tech@signalwayantibody.com

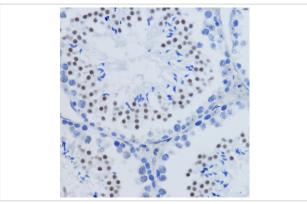

Description

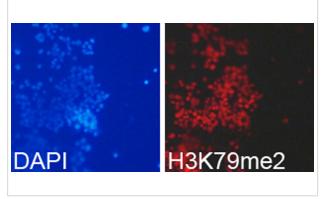
Product Name	Histone H3K79me2 Polyclonal Antibody
Host Species	Rabbit
Clonality	Polyclonal
Isotype	IgG
Purification	Affinity purification
Applications	WB,IHC,IF
Species Reactivity	Human;Mouse;Rat
Immunogen Type	Peptide
Immunogen Description	A synthetic peptide of human DiMethyl-Histone H3-K79
Conjugates	Unconjugated
Target Name	Histone H3
Modification	Methyl
Other Names	H3.4;H3/g;H3FT;H3t;HIST3H3;Histone H3;HIST1H3A
Accession No.	Uniprot:Q16695GeneID:8290
SDS-PAGE MW	17kDa
Concentration	1.0mg/ml
Formulation	PBS with 0.02% sodium azide,50% glycerol,pH7.3.
Storage	Store at -20°C. Avoid freeze / thaw cycles.


Application Details

WB□1:500 - 1:1000IHC□1:50 - 1:100IF□1:50 - 1:200


Images


Western blot analysis of extracts of HeLa cells, using DiMethyl-Histone H3-K79 antibody.


Immunohistochemistry of paraffin-embedded human mammary cancer using DiMethyl-Histone H3-K79 antibody.

Immunohistochemistry of paraffin-embedded rat testis using DiMethyl-Histone H3-K79 antibody.

Immunohistochemistry of paraffin-embedded mouse testis using DiMethyl-Histone H3-K79 antibody.

Immunofluorescence analysis of 293T cells using DiMethyl-Histone H3-K79 antibody.

Background

Histones are basic nuclear proteins that are responsible for the nucleosome structure of the chromosomal fiber in eukaryotes. Nucleosomes consist of approximately 146 bp of DNA wrapped around a histone octamer composed of pairs of each of the four core histones (H2A, H2B, H3, and H4). The chromatin fiber is further compacted through the interaction of a linker histone, H1, with the DNA between the nucleosomes to form higher order chromatin structures. This gene is intronless and encodes a replication-dependent histone that is a member of the histone H3 family. Transcripts from this gene lack polyA tails; instead, they contain a palindromic termination element. This gene is located separately from the other H3 genes that are in the histone gene cluster on chromosome 6p22-p21.3.

Note: This product is for in vitro research use only and is not intended for use in humans or animals.
The product is for in vitro recognish and is not internated for account name of animals.